Disulfide Bonds within the C2 Domain of RAGE Play Key Roles in Its Dimerization and Biogenesis
نویسندگان
چکیده
BACKGROUND The receptor for advanced glycation end products (RAGE) on the cell surface transmits inflammatory signals. A member of the immunoglobulin superfamily, RAGE possesses the V, C1, and C2 ectodomains that collectively constitute the receptor's extracellular structure. However, the molecular mechanism of RAGE biogenesis remains unclear, impeding efforts to control RAGE signaling through cellular regulation. METHODOLOGY AND RESULT: We used co-immunoprecipitation and crossing-linking to study RAGE oligomerization and found that RAGE forms dimer-based oligomers. Via non-reducing SDS-polyacrylamide gel electrophoresis and mutagenesis, we found that cysteines 259 and 301 within the C2 domain form intermolecular disulfide bonds. Using a modified tripartite split GFP complementation strategy and confocal microscopy, we also found that RAGE dimerization occurs in the endoplasmic reticulum (ER), and that RAGE mutant molecules without the double disulfide bridges are unstable, and are subjected to the ER-associated degradation. CONCLUSION Disulfide bond-mediated RAGE dimerization in the ER is the critical step of RAGE biogenesis. Without formation of intermolecular disulfide bonds in the C2 region, RAGE fails to reach cell surface. SIGNIFICANCE This is the first report of RAGE intermolecular disulfide bond.
منابع مشابه
G-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملA stable alpha-helical domain at the N terminus of the RIalpha subunits of cAMP-dependent protein kinase is a novel dimerization/docking motif.
The RIalpha subunit of cAMP-dependent protein kinase is maintained as an asymmetric dimer by a dimerization motif at the N terminus. Based on resistance to proteolysis and expression as a discrete domain in Escherichia coli, this motif is defined as residues 12-61. This motif is chemically, kinetically, and thermally stable. The two endogenous interchain disulfide bonds between Cys16 and Cys37 ...
متن کاملOvercoming residual frustration in domain-swapping: the roles of disulfide bonds in dimerization and aggregation.
The prevalence of domain-swapping in nature is a manifestation of the principle of minimal frustration in that the interactions designed by evolution to stabilize the protein are also involved in this mode of binding. We previously demonstrated that the Symmetrized-Go potential accurately predicts the experimentally observed domain-swapped structure of Eps8 based solely on the structure of the ...
متن کاملDimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains.
Cellulose synthase (CesA) proteins are components of CesA complexes (rosettes) and are thought to catalyze the chain elongation step in glucan polymerization. Little is understood about rosette assembly, including how CesAs interact with each other or with other components within the complexes. The first conserved region at the N terminus of plant CesA proteins contains two putative zinc finger...
متن کاملEndothelial CD146 is required for in vitro tumor-induced angiogenesis: the role of a disulfide bond in signaling and dimerization.
Tumor angiogenesis, induced by tumor-secreted pro-angiogenic factors, is an essential process for cancer development and metastasis. CD146 is identified as an endothelial cell adhesion molecule and implicated in blood vessel formation, however, its exact role in angiogenesis, particularly tumor angiogenesis, and its potential function of mediating downstream signaling are still unclear. In pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012